PROBLEM / OBJECTIVE

- The majority of today’s fighting vehicles are legacy vehicles with insufficient underbody protection
 - To have sufficient protection, underbodies either become too heavy or consume space that is not available due to underbody accessories, exhaust, and drive train components, etc.
 - Fabrications from plate that meet volume requirements contain weld joints that present points of vulnerability
- The majority of today’s wide area munitions do not meet the DoD policy on cluster munitions
 - Current solutions for replacing noncompliant cluster munitions are expensive

APPROACH / BENEFITS

Approach

- Establish cast steel metallurgy to maximize strength and ductility for maximum protection and lethality
- Develop integrated computation based casting process and high fidelity performance simulations for the cast underbody protection system
- Implement lower hull direct integration technique to minimize vulnerability and reduce integration time
- Formulate net shape cast steel technology to increase manufacturing yield and reduce product cycle time
- Integrate the cast steel technology directly with cast steel industrial base to maximize high payoff potentials

https://www.dodmantech.com/
Expected Benefits and Warfighter Impact

- Defeat the combat vehicle underbody threats
- 20% cost reduction target thru lower hull underbody assembly enhancements
- Affordable cross-platform combat vehicle underbody protection
- 35% minimum cost reduction thru net shape cast munitions

POINT OF CONTACT

Government Point of Contact: Kyu C. Cho
410-306-0820
kyu.c.cho2.civ@mail.mil

88ABW-2013-4576

https://www.dodmantech.com/