Register | Log in

Defense-wide Manufacturing Science & Technology (DMS&T)


The Department of Defense (DoD) Manufacturing Technology (ManTech) program is an investment mechanism that allows the Department to advance the state of the art for defense-essential manufacturing capability, through the development of technologies and processes necessary for the production of defense systems. The Army, Navy, Air Force, Defense Logistics Agency (DLA), and the Missile Defense Agency (MDA) each have ManTech Programs, while the Deputy Assistant Secretary of Defense (Manufacturing Industrial Base Policy) office has the responsibility for the Defense-wide Manufacturing Science & Technology (DMS&T) ManTech Program.


DMS&T was established in FY08 to address needs beyond the risk of a single Service or agency and to complement those other components' ManTech programs. The Program focuses on cross-cutting defense manufacturing needs – those that are beyond the ability of a single service to address – and stimulates the early development of manufacturing processes and enterprise business practices concurrent with S&T development to achieve the largest cost-effective impact and facilitate the developments enabling capabilities to our Warfighters.


What Makes a Good DMS&T Project?

Information for Government Project Leads

Must be logged in to view:


FY18 Budget: $21.3M Core, $133.8M Manufacturing USA Institutes

Out-Year Consideratons

Examples of Current Projects

Success Stories

Improved Manufacturing Processes and Affordability of Chip Scale Atomic Clocks

Download [pdf - 193KB] Project Completion: September 2014

DoD ManTech invested in improving the manufacturing processes and affordability of the Chip Scale Atomic Clocks. Collaboration between DMS&T, Army, and GPS Directorate program offices resulted in automating key manufacturing processes of the physics package and expanded the practical CSAC usage markets by lowering the cost. The expected return on investment is 42:1.

Reduced Cost, Weight and Number of Batteries for the Army’s LRAS3

Download [pdf - 219KB]

DMS&T, Army and DLA formed a team to integrate newly developed, proven cell technology and battery electronics into the production design of an advanced lithium power source, which would reduce the battery system weight significantly. The impact of the $1.2M ManTech investment has reduced the Battery System weight by 75% and netted a cost savings of $12.5M. The new auxiliary charging capability eliminates the need for additional charging equipment benefiting the warfighter greatly.

3D – Airfoil Inspection (3DAI)

Download [pdf - 299KB] Project Completion: December 2011

The current processes for inspecting complex airfoil designs are too slow for full rate/surge production or efficient maintenance operations. The 3DAI system has achieved 2 - 4 min airfoil inspection times (93-96% reduction). Additional advantages afforded by the technology include reduced airflow variation (which could also enable decreases to total cooling flow), increased engine efficiency, lower fuel consumption, and potentially longer component service life due to better control of cooling at critical locations.

Risk Assessment for Next Generation Supply Chain Readiness (RANGER)

Download [pdf - 109KB] Project Completion: December 2011

The RANGER project baselines and categorizes the elements of risk associated with defined supply chains. Metrics are established based on the risks to provide the appropriate information for action. With various studies and supplier surveys offering development guidance, a software simulation package called Risk Assessment and Decision Analysis for Supply Chain Readiness (RADAR) was developed using real supply chain data.

Conformal Load-bearing Antenna Structures (CLAS)

Download [pdf - 55KB] Project Completion: May 2011

The weight and profile of the conventional VHF blade antenna has an adverse affect on performance and operation costs. These issues along with the technical maturity of “spray-on” or Direct Write (DW) type of antennas has lead to investment to advance the manufacturing maturity of DW Conformal Load-Bearing Antenna Structures (CLAS). The goal was to develop a fully deposited, highly durable, structurally integrated antenna element that will replace an existing parasitic blade antenna.

Out-of-Autoclave Processing of New Bismaleimide (BMI) Resin Materials For Aerospace Structures

Download [pdf - 33KB] Project Completion: April 2011

Current Bismaleimide (BMI) resins require fabrication in an autoclave to achieve aerospace quality. Avoiding autoclave processing enables an increased supplier base and drives down capital investments and material costs. A recent breakthrough in BMI resin technology created an opportunity for cost savings and fabrication improvements for composite aerospace components. The new discovery eliminates the need for components to be cured in an autoclave, which allows the resin to be used for much larger components, and for field and depot repair.

In-line Fiber Tow Coating for Ceramic Matrix Composites

Download [pdf - 45KB] Project Completion: March 2011

A key component of fabricating CMC parts goes back to proper coating of the silicon carbide (SiC) fiber tows. The In-Line Fiber Tow Coating for CMCs effort converts a CMC multi-step batch process to a single step process thereby reducing new and legacy engine manufacturing costs. This project will result in a stream-lined manufacturing process with higher throughput, which will achieve future CMC demands for the T700 and other legacy engines, and opens the door for the technology’s use in other applications.

Improved Design Effectiveness through Next Generation Visualization (IDEV)

Download [pdf - 17KB] Project Completion: January 2011

The goal of this effort is to create commercial software to integrate design tools with immersive visualization. This will allow teams to more effectively implement innovative solutions to demanding performance requirements using visual prototypes.

To view older success stories, Click Here.